Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.729
Filtrar
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 443-449, 2024 Apr 10.
Artigo em Chinês | MEDLINE | ID: mdl-38565510

RESUMO

OBJECTIVE: To explore the clinical manifestations and genetic basis for a Chinese pedigree affected with atypical Charcot-Marie-Tooth disease type 1 A (CMT1A). METHODS: A patient admitted to the Department of Neurology, Xijing Hospital Affiliated to Air Force Medical University in June 2022 was selected as the study subject. Clinical data of the patient was collected, and 17 family members from four generations of this pedigree were traced based on pes arcuatus and atypical clinical symptoms. Neuroultrasound and genetic testing were carried out on available family members. Whole exome sequencing and multiple ligation-dependent probe amplification assay were carried out for the proband and some of the affected members of the pedigree. RESULTS: The proband, a 15-year-old male, had presented with paroxystic limb pain with weakness, accompanied by pes cavus and hypertrophy of gastrocnemius muscles, without stork leg sign caused by muscles atrophy in the distal lower extremities. MRI has revealed no sign of fat infiltration in the muscles of both legs. Nerve conduction examination had indicated damages of the sensory and motor nerves of the limbs, mainly with demyelinating changes. Seven members of the pedigree had pes arcuatus, including 5 presenting with paroxysmal neuropathic pain and myasthenia in the limbs, whilst 2 were without any clinical symptoms. Neurosonography of the proband, his brother, father and aunt showed thickened peripheral nerves of the extremities with unclear bundle structure. Genetic analysis revealed a large repeat encompassing exons 1 to 5 of the PMP22 gene and flanking regions (chr17: 15133768_15502298) in some of the affected members, which was predicted to be pathogenic. CONCLUSION: The duplication of PMP22 gene was considered to be pathogenic for this CMT1A pedigree.


Assuntos
Doença de Charcot-Marie-Tooth , Masculino , Humanos , Adolescente , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Linhagem , Proteínas da Mielina/genética , Músculo Esquelético , China , Duplicação Gênica
2.
EMBO Mol Med ; 16(3): 616-640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383802

RESUMO

Haplo-insufficiency of the gene encoding the myelin protein PMP22 leads to focal myelin overgrowth in the peripheral nervous system and hereditary neuropathy with liability to pressure palsies (HNPP). Conversely, duplication of PMP22 causes Charcot-Marie-Tooth disease type 1A (CMT1A), characterized by hypomyelination of medium to large caliber axons. The molecular mechanisms of abnormal myelin growth regulation by PMP22 have remained obscure. Here, we show in rodent models of HNPP and CMT1A that the PI3K/Akt/mTOR-pathway inhibiting phosphatase PTEN is correlated in abundance with PMP22 in peripheral nerves, without evidence for direct protein interactions. Indeed, treating DRG neuron/Schwann cell co-cultures from HNPP mice with PI3K/Akt/mTOR pathway inhibitors reduced focal hypermyelination. When we treated HNPP mice in vivo with the mTOR inhibitor Rapamycin, motor functions were improved, compound muscle amplitudes were increased and pathological tomacula in sciatic nerves were reduced. In contrast, we found Schwann cell dedifferentiation in CMT1A uncoupled from PI3K/Akt/mTOR, leaving partial PTEN ablation insufficient for disease amelioration. For HNPP, the development of PI3K/Akt/mTOR pathway inhibitors may be considered as the first treatment option for pressure palsies.


Assuntos
Artrogripose , Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt , Roedores/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Serina-Treonina Quinases TOR
3.
Mol Med Rep ; 29(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38362940

RESUMO

The myelin and lymphocyte protein (MAL) family is a novel gene family first identified and characterized in 2002. This family is comprised of seven members, including MAL, MAL2, plasmolipin, MALL, myeloid differentiation­associated marker (MYADM), MYADML2 and CMTM8, which are located on different chromosomes. In addition to exhibiting extensive activity during transcytosis, the MAL family plays a vital role in the neurological, digestive, respiratory, genitourinary and other physiological systems. Furthermore, the intimate association between MAL and the pathogenesis, progression and metastasis of malignancies, attributable to several mechanisms such as DNA methylation has also been elucidated. In the present review, an overview of the structural and functional properties of the MAL family and the latest research findings regarding the relationship between several MAL members and various cancers is provided. Furthermore, the potential clinical and scientific significance of MAL is discussed and directions for future research are summarized.


Assuntos
Neoplasias , Proteolipídeos , Humanos , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina , Proteolipídeos/química , Proteolipídeos/genética , Proteolipídeos/metabolismo , Proteínas da Mielina/genética , Proteínas , Neoplasias/genética , Transformação Celular Neoplásica , Carcinogênese/genética , Linfócitos/metabolismo , Quimiocinas , Proteínas com Domínio MARVEL
4.
J Mol Diagn ; 26(4): 304-309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301867

RESUMO

The utility of the next-generation sequencing (NGS) panel could be increased in hereditary peripheral neuropathies, given that the duplication of PMP22 is a major abnormality. In the present study, the analytical performance of an algorithm for detecting PMP22 copy number variation (CNV) from the NGS panel data was evaluated. The NGS panel covers 141 genes, including PMP22 and five genes within 1.5-megabase duplicated region at 17p11.2. CNV calling was performed using a laboratory-developed algorithm. Among the 92 cases subjected to targeted NGS panel from March 2018 to January 2021, 26 were suggestive of PMP22 CNV. Multiplex ligation-dependent probe amplification analysis was performed in 58 cases, and the results were 100% concordant with the NGS data (23 duplications, 2 deletions, and 33 negatives). Analytical performance of the pipeline was further validated by another blind data set, including 14 positive and 20 negative samples. Reliable detection of PMP22 CNV was possible by analyzing not only PMP22 but also the adjacent genes within the 1.5-megabase region of 17p11.2. On the basis of the high accuracy of CNV calling for PMP22, the testing strategy for diagnosis of peripheral polyneuropathies could be simplified by reducing the need for multiplex ligation-dependent probe amplification.


Assuntos
Doenças do Sistema Nervoso Periférico , Humanos , Doenças do Sistema Nervoso Periférico/genética , Variações do Número de Cópias de DNA/genética , Reprodutibilidade dos Testes , Testes Genéticos/métodos , Proteínas da Mielina/genética
5.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38378628

RESUMO

Altered expression of peripheral myelin protein 22 (PMP22) results in demyelinating peripheral neuropathy. PMP22 exhibits a highly restricted tissue distribution with marked expression in the myelinating Schwann cells of peripheral nerves. Auditory and vestibular Schwann cells and the afferent neurons also express PMP22, suggesting a unique role in hearing and balancing. Indeed, neuropathic patients diagnosed with PMP22-linked hereditary neuropathies often present with auditory and balance deficits, an understudied clinical complication. To investigate the mechanism by which abnormal expression of PMP22 may cause auditory and vestibular deficits, we studied gene-targeted PMP22-null mice. PMP22-null mice exhibit an unsteady gait, have difficulty maintaining balance, and live for only ∼3-5 weeks relative to unaffected littermates. Histological analysis of the inner ear revealed reduced auditory and vestibular afferent nerve myelination and profound Na+ channel redistribution without PMP22. Yet, Na+ current density was unaltered, in stark contrast to increased K+ current density. Atypical postsynaptic densities and a range of neuronal abnormalities in the organ of Corti were also identified. Analyses of auditory brainstem responses (ABRs) and vestibular sensory-evoked potential (VsEP) revealed that PMP22-null mice had auditory and vestibular hypofunction. These results demonstrate that PMP22 is required for hearing and balance, and the protein is indispensable for the formation and maintenance of myelin in the peripheral arm of the eighth nerve. Our findings indicate that myelin abnormalities and altered signal propagation in the peripheral arm of the auditory nerve are likely causes of auditory deficits in patients with PMP22-linked neuropathies.


Assuntos
Doenças Desmielinizantes , Proteínas da Mielina , Animais , Humanos , Camundongos , Doenças Desmielinizantes/metabolismo , Camundongos Knockout , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Células de Schwann/metabolismo
6.
Invest Ophthalmol Vis Sci ; 65(1): 4, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165704

RESUMO

Purpose: To investigate the impact of transmembrane protein CMTM6 on the pathogenesis of dry eye disease (DED) and elucidate its potential mechanisms. Methods: CMTM6 expression was confirmed by database analysis, real-time polymerase chain reaction (RT-PCR), western blot, and immunohistochemistry. Tear secretion was measured using the phenol red thread test. Immune cell infiltration was assessed through flow cytometry. Barrier function was evaluated by fluorescein sodium staining, immunofluorescence staining of zonula occludens 1 (ZO-1), and electric cell-substrate impedance sensing (ECIS) assessment. For silencing CMTM6 expression, siRNA and shRNA were employed, along with lentiviral vector-mediated overexpression of CMTM6. Proinflammatory cytokine levels were analyzed by RT-PCR and cytometric bead array (CBA) analysis. Results: CMTM6 showed high expression in healthy human and mouse corneal and conjunctival epithelium but was notably reduced in DED. Notably, this downregulation was correlated with disease severity. Cmtm6-/- dry eye (DE) mice displayed reduced tear secretion, severe corneal epithelial defects, decreased conjunctival goblet cell density, and upregulated inflammatory response. Additionally, Cmtm6-/- DE mice and CMTM6 knockdown human corneal epithelial cell-transformed (HCE-T) cells showed more severe barrier disruption and reduced expression of ZO-1. Knockdown of CMTM6 in HCE-T cells increased inflammatory responses induced by hyperosmotic stress, which was significantly mitigated by CMTM6 overexpression. Moreover, the level of phospho-p65 in hyperosmolarity-stimulated HCE-T cells increased after silencing CMTM6. Nuclear factor kappa B (NF-κB) p65 inhibition (JSH-23) reversed the excessive inflammatory responses caused by hyperosmolarity in CMTM6 knockdown HCE-T cells. Conclusions: The reduction in CMTM6 expression on the ocular surface contributes to the pathogenesis of DED. The CMTM6-NF-κB p65 signaling pathway may serve as a promising therapeutic target for DED.


Assuntos
Síndromes do Olho Seco , Epitélio Corneano , Proteínas com Domínio MARVEL , Proteínas da Mielina , Animais , Humanos , Camundongos , Córnea/metabolismo , Síndromes do Olho Seco/metabolismo , Epitélio Corneano/metabolismo , NF-kappa B/metabolismo , Proteínas com Domínio MARVEL/genética , Proteínas com Domínio MARVEL/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo
7.
Funct Integr Genomics ; 24(1): 10, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221563

RESUMO

Thyroid cancer is the most common type of endocrine cancer. Chemokine-like factor (CKLF)-like MARVEL transmembrane domain containing 6 (CMTM6) is recognized as one of its potential immunotherapy targets. The purpose of this study was to investigate the role and molecular mechanism of CMTM6 in regulating the development of thyroid cancer cells. In this study, expression levels of CMTM6 and the sodium/iodide symporter (NIS) were detected by qRT-PCR. Additionally, colony formation assay and flow cytometry were used to detect cell proliferation and apoptosis, while expression levels of various proteins were assessed using Western blotting. Further, the apoptosis and invasion capacity of cells were investigated by scratch and transwell experiments. Finally, the effect of CMTM6 on the epithelial-mesenchymal transition (EMT) of thyroid cancer cells was determined by immunofluorescence assay, which measured the expression levels of epithelial and mesenchymal phenotypic markers. The results of qRT-PCR experiments showed that CMTM6 was highly expressed in thyroid cancer tissues and cells. In addition, knockdown of CMTM6 expression significantly increased NIS expression. Function experiments demonstrated that small interfering (si)-CMTM6 treatment inhibited the proliferation, migration, invasion, and EMT of thyroid cancer cells, while promoting apoptosis of FTC133 cells. Furthermore, mechanistic studies showed that mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) phosphorylation were inhibited by si-CMTM6, as demonstrated by Western blot experiments. In conclusion, our findings demonstrated the role of CMTM6 in the metastasis of thyroid cancer. Briefly, CMTM6 exerts its tumor-promoting effect through the MAPK signaling pathway and could potentially be used as a valuable biomarker for thyroid cancer diagnosis and prognosis.


Assuntos
Proteínas com Domínio MARVEL , Proteínas da Mielina , Simportadores , Neoplasias da Glândula Tireoide , Humanos , Linhagem Celular Tumoral , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Simportadores/genética , Simportadores/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Proteínas com Domínio MARVEL/genética , Proteínas com Domínio MARVEL/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo
8.
Intern Med ; 63(2): 315-318, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37225480

RESUMO

Charcot-Marie-Tooth (CMT) disease is a heterogeneous hereditary motor and sensory neuropathy of the peripheral nervous system, with CMT1A in particular being the most common form. We encountered a 76-year-old woman with CMT1A who had a history of pain attacks and hearing loss from a young age, with motor symptoms manifesting late in life. Her pain and hearing loss may have been related to CMT. Our case also raises the possibility that neuropathic pain and hearing loss may precede the classic motor symptoms of CMT1A.


Assuntos
Doença de Charcot-Marie-Tooth , Surdez , Perda Auditiva , Neuropatia Hereditária Motora e Sensorial , Feminino , Humanos , Idoso , Doença de Charcot-Marie-Tooth/complicações , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Perda Auditiva/etiologia , Perda Auditiva/genética , Dor , Proteínas da Mielina/genética
9.
Cell Signal ; 115: 111012, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38113979

RESUMO

BACKGROUND: The chemokine-like factor (CKLF)-like Marvel transmembrane structural domain (CMTM) family is widely expressed in the tumor and immune systems and is essential in human cancer progression. However, the multi-omic profile of CMTM family genes and their role in tumor patient prognosis and immune microenvironment have not been explored. METHODS: We collected data from 33 cancers and 33 non-cancers and then comprehensively analyzed the basal expression levels of CMTM family genes in normal human tissues as well as abnormal expression in diseases, genomic alterations, diagnostic and prognostic roles, subcellular localization, pathway enrichment, the immune microenvironment, associations with immune checkpoints, and drug sensitivities as well as to predict the immunotherapeutic response of patients to ICIs and targeting of small molecule drugs, the above results were validated by immunohistochemical staining, pathology sections and experiments. We also performed protein docking of immune checkpoints binding to CMTM6 and screening of small molecule drugs targeting CMTM6 based on mass spectrometry results and molecular docking techniques. Finally, we experimentally confirmed the role of CMTM6 in bladder cancer. RESULTS: We found differential expression and diagnostic biomarker value of the CMTMs family in diseases (cancer and non-cancer). CMTMs were also found to play a key role in pan-cancer with the tumor microenvironment. CMTMs were closely associated with common immune checkpoints, TMB and MSI, so we scored CMTMs based on CMTMs expression in patients undergoing ICI, and patients with lower scores had better survival and showed higher immunotherapy response after immunotherapy. Finally, molecular docking was used to identify small molecule inhibitors that could target CMTM6 and binding poses of CMTM6 to other immune checkpoint genes. Finally, it was determined experimentally that knockdown of CMTM6 gene expression inhibited the proliferation and invasion of bladder cancer cells. CONCLUSIONS: Our findings provide a valuable strategy to guide the diagnostic and therapeutic direction of CMTM family genes in disease.


Assuntos
Proteínas com Domínio MARVEL , Proteínas da Mielina , Neoplasias da Bexiga Urinária , Humanos , Biologia Computacional , Células Epiteliais , Simulação de Acoplamento Molecular , Microambiente Tumoral , Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Proteínas da Mielina/genética , Proteínas com Domínio MARVEL/genética
10.
Curr Opin Neurol ; 36(6): 516-522, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865850

RESUMO

PURPOSE OF REVIEW: After traumatic spinal cord injury (SCI), neurological deficits persist due to the disconnection of surviving neurons. While repair of connectivity may restore function, no medical therapy exists today.This review traces the development of the neural repair-based therapeutic AXER-204 from animal studies to the recent clinical trial for chronic cervical SCI. RECENT FINDINGS: Molecular studies reveal a Nogo-66 Receptor 1 (NgR1, RTN4R) pathway inhibiting axon regeneration, sprouting, and plasticity in the adult mammalian central nervous system (CNS). Rodent and nonhuman primate studies demonstrate that the soluble receptor decoy NgR(310)ecto-Fc or AXER-204 promotes neural repair and functional recovery in transection and contusion SCI. Recently, this biological agent completed a first-in-human and randomized clinical trial for chronic cervical SCI. The intervention was safe and well tolerated. Across all participants, upper extremity strength did not improve with treatment. However, posthoc and biomarker analyses suggest that AXER-204 may benefit treatment-naïve patients with incomplete SCI in the chronic stage. SUMMARY: NgR1 signaling restricts neurological recovery in animal studies of CNS injury. The recent clinical trial of AXER-204 provides encouraging signals supporting future focused trials of this neural repair therapeutic. Further, AXER-204 studies provide a roadmap for the development of additional and synergistic therapies for chronic SCI.


Assuntos
Axônios , Traumatismos da Medula Espinal , Animais , Humanos , Axônios/metabolismo , Receptores Nogo/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Proteínas da Mielina/uso terapêutico , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/terapia , Receptor Nogo 1/metabolismo , Recuperação de Função Fisiológica , Medula Espinal , Mamíferos/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
J Biol Chem ; 299(10): 105232, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690690

RESUMO

After adult mammalian central nervous system injury, axon regeneration is extremely limited or absent, resulting in persistent neurological deficits. Axon regeneration failure is due in part to the presence of inhibitory proteins, including NogoA (Rtn4A), from which two inhibitory domains have been defined. When these inhibitory domains are deleted, but an amino-terminal domain is still expressed in a gene trap line, mice show axon regeneration and enhanced recovery from injury. In contrast, when there is no amino-terminal Nogo-A fragment in the setting of inhibitory domain deletion, then axon regeneration and recovery are indistinguishable from WT. These data indicated that an amino-terminal Nogo-A fragment derived from the gene trap might promote axon regeneration, but this had not been tested directly and production of this fragment without gene targeting was unclear. Here, we describe posttranslation production of an amino-terminal fragment of Nogo-A from the intact gene product. This fragment is created by proteolysis near amino acid G214-N215 and levels are enhanced by axotomy. Furthermore, this fragment promotes axon regeneration in vitro and acts cell autonomously in neurons, in contrast to the inhibitory extracellular action of other Nogo-A domains.Proteins interacting with the amino-terminal Nogo-A fragment by immunoprecipitation include HSPA8 (HSC70, HSP7C). Suppression of HSPA8 expression by shRNA decreases axon regeneration from cerebral cortical neurons and overexpression increases axon regeneration. Moreover, the amino-terminal Nogo-A fragment increases HSPA8 chaperone activity. These data provide an explanation for varied results in different gene-targeted Nogo-A mice, as well as revealing an axon regeneration promoting domain of Nogo-A.


Assuntos
Axônios , Proteínas da Mielina , Animais , Camundongos , Axônios/metabolismo , Inibidores do Crescimento/metabolismo , Mamíferos/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Regeneração Nervosa/fisiologia , Proteínas Nogo/genética , Proteínas Nogo/metabolismo , Proteólise , Feminino , Camundongos Endogâmicos C57BL
14.
Cells ; 12(16)2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37626895

RESUMO

This study comprehensively addresses the involvement of the protein CKLF-like Marvel transmembrane domain-containing family member 5 (CMTM5) in the context of demyelination and cytodegenerative autoimmune diseases, particularly multiple Sclerosis (MS). An observed reduction in CMTM5 expression in post-mortem MS lesions prompted further investigations in both in vitro and in vivo animal models. In the cuprizone animal model, we detected a decrease in CMTM5 expression in oligodendrocytes that is absent in other members of the CMTM protein family. Our findings also confirm these results in the experimental autoimmune encephalomyelitis (EAE) model with decreased CMTM5 expression in both cerebellum and spinal cord white matter. We also examined the effects of a Cmtm5 knockdown in vitro in the oligodendroglial Oli-neu mouse cell line using the CRISPR interference technique. Interestingly, we found no effects on cell response to thapsigargin-induced endoplasmic reticulum (ER) stress as determined by Atf4 activity, an indicator of cellular stress responses. Overall, these results substantiate previous findings suggesting that CMTM5, rather than contributing to myelin biogenesis, is involved in maintaining axonal integrity. Our study further demonstrates that the knockdown of Cmtm5 in vitro does not modulate oligodendroglial responses to ER stress. These results warrant further investigation into the functional role of CMTM5 during axonal degeneration in the context of demyelinating conditions.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Esclerose Múltipla/genética , Proteínas da Mielina/genética , Encefalomielite Autoimune Experimental/genética , Autopsia , Oligodendroglia
15.
Neurogenetics ; 24(4): 291-301, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37606798

RESUMO

Charcot-Marie-Tooth disease (CMT) is a heterogeneous set of hereditary neuropathies whose genetic causes are not fully understood. Here, we characterize three previously unknown variants in PMP22 and assess their effect on the recently described potential CMT biomarkers' growth differentiation factor 15 (GDF15) and neurofilament light (NFL): first, a heterozygous PMP22 c.178G > A (p.Glu60Lys) in one mother-son pair with adult-onset mild axonal neuropathy. The variant led to abnormal splicing, confirmed in fibroblasts by reverse transcription PCR. Second, a de novo PMP22 c.35A > C (p.His12Pro), and third, a heterozygous 3.2 kb deletion predicting loss of exon 4. The latter two had severe CMT and ultrasonography showing strong nerve enlargement similar to a previous case of exon 4 loss due to a larger deletion. We further studied patients with PMP22 duplication (CMT1A) finding slightly elevated plasma NFL, as measured by the single molecule array immunoassay (SIMOA). In addition, plasma GDF15, as measured by ELISA, correlated with symptom severity for CMT1A. However, in the severely affected individuals with PMP22 exon 4 deletion or p.His12Pro, these biomarkers were within the range of variability of CMT1A and controls, although they had more pronounced nerve hypertrophy. This study adds p.His12Pro and confirms PMP22 exon 4 deletion as causes of severe CMT, whereas the previously unknown splice variant p.Glu60Lys leads to mild axonal neuropathy. Our results suggest that GDF15 and NFL do not distinguish CMT1A from advanced hypertrophic neuropathy caused by rare PMP22 variants.


Assuntos
Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Adulto , Humanos , Fator 15 de Diferenciação de Crescimento/genética , Filamentos Intermediários , Proteínas da Mielina/genética , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/diagnóstico , Biomarcadores
16.
Neuromuscul Disord ; 33(8): 627-635, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37455204

RESUMO

There is still no effective drug treatment available for Charcot-Marie-Tooth disease (CMT). Current management relies on rehabilitation therapy, surgery for skeletal deformities, and symptomatic treatment. The challenge is to find disease-modifying therapies. Several approaches, including gene silencing (by means of ASO, siRNA, shRNA, miRNA, CRISPR-Cas9 editing), to counteract the PMP22 gene overexpression in the most frequent CMT1A type are under investigation. PXT3003 is the compound in the most advanced phase for CMT1A, as a second phase-III trial is ongoing. Gene therapy to substitute defective genes (particularly in recessive forms associated with loss-of-function mutations) or insert novel ones (e.g., NT3 gene) are being developed and tested in animal models and in still exceptional cases have reached the clinical trial phase in humans. Novel treatment approaches are also aimed at developing compounds acting on pathways important for different CMT types. Modulation of the neuregulin pathway determining myelin thickness is promising for both hypo-demyelinating and hypermyelinating neuropathies; intervention on Unfolded Protein Response seems effective for rescuing misfolded myelin proteins such as MPZ in CMT1B. HDAC6 inhibitors improved axonal transport and ameliorated phenotypes in different CMT models. Other potential therapeutic strategies include targeting macrophages, lipid metabolism, and Nav1.8 sodium channel in demyelinating CMT and the P2×7 receptor, which regulates calcium influx into Schwann cells, in CMT1A. Further approaches are aimed at correcting metabolic abnormalities, including the accumulation of sorbitol caused by biallelic mutations in the sorbitol dehydrogenase (SORD) gene and of neurotoxic glycosphingolipids in HSN1.


Assuntos
Doença de Charcot-Marie-Tooth , Animais , Humanos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/terapia , Proteínas da Mielina/genética , Mutação , Fenótipo , Terapia Genética
17.
Brain ; 146(10): 4025-4032, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37337674

RESUMO

Copy number variation (CNV) may lead to pathological traits, and Charcot-Marie-Tooth disease type 1A (CMT1A), the commonest inherited peripheral neuropathy, is due to a genomic duplication encompassing the dosage-sensitive PMP22 gene. MicroRNAs act as repressors on post-transcriptional regulation of gene expression and in rodent models of CMT1A, overexpression of one such microRNA (miR-29a) has been shown to reduce the PMP22 transcript and protein level. Here we present genomic and functional evidence, for the first time in a human CNV-associated phenotype, of the 3' untranslated region (3'-UTR)-mediated role of microRNA repression on gene expression. The proband of the family presented with an early-onset, severe sensorimotor demyelinating neuropathy and harboured a novel de novo deletion in the PMP22 3'-UTR. The deletion is predicted to include the miR-29a seed binding site and transcript analysis of dermal myelinated nerve fibres using a novel platform, revealed a marked increase in PMP22 transcript levels. Functional evidence from Schwann cell lines harbouring the wild-type and mutant 3'-UTR showed significantly increased reporter assay activity in the latter, which was not ameliorated by overexpression of a miR-29a mimic. This shows the importance of miR-29a in regulating PMP22 expression and opens an avenue for therapeutic drug development.


Assuntos
Doença de Charcot-Marie-Tooth , MicroRNAs , Humanos , Doença de Charcot-Marie-Tooth/patologia , MicroRNAs/genética , Variações do Número de Cópias de DNA , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Expressão Gênica
18.
Rev Neurol (Paris) ; 179(8): 902-909, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37296061

RESUMO

Hereditary neurological disorders represent a wild group of hereditary illnesses affecting mainly the nervous system, the majority of which have a Mendelian inheritance pattern. Here we present the case of two Moroccan patients each affected by a different hereditary neurological disorder. In the first patient WES analysis revealed the presence of the p.Ser72Leu de novo mutation in the PMP22 gene reported for the first time in Africa, specifically in Morocco. This variant is predicted to be in a mutation "hot-spot" region causing Dejerine-Sottas syndrome called also Charcot-Marie-Tooth type 3. The molecular modeling study suggests an important alteration of hydrogen and hydrophobic interactions between the residue in position 72 of the PMP22 protein and its surrounding amino acids. On the other hand, the p.Ala177Thr mutation on the RNASEH2B gene, responsible of Aicardi-Goutières syndrome 2, was carried in a homozygous state by the second patient descending from a consanguineous family. This mutation is common among the Moroccan population as well as in other North African countries. The present results contributed to a better follow-up of both cases allowing better symptom management with convenient treatments.


Assuntos
Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Humanos , Doença de Charcot-Marie-Tooth/genética , Mutação , Proteínas/genética , Marrocos , Proteínas da Mielina/genética
19.
J Peripher Nerv Syst ; 28(3): 513-517, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37170477

RESUMO

AIM: Hereditary neuropathy with liability to pressure palsies (HNPP) is a peripheral neuropathy with autosomal dominant inheritance. Diagnosis can be made from the characteristic abnormalities determined by nerve conduction studies (NCS), including subclinical deficits at physiological compression sites. Heterozygous deletion of the chromosome 17p11.2-p12 region including the peripheral myelin protein 22 gene (PMP22) is the cause in the majority of cases. However, the loss of function of PMP22 due to frameshift-causing insertion/deletion, missense, nonsense, or splice-site disrupting variants cause HNPP in some patients. We report a case of a patient diagnosed with HNPP on the basis of clinical features and the results of NCS. No deletions of PMP22 were detected by fluorescence in situ hybridization. METHODS: We performed direct nucleotide sequence analysis and identified a heterozygous variant, c.78 + 3G > T, in PMP22. Since this variant is located outside the canonical splice site at the exon 2-intron 2 junction, we investigated whether the variant causes aberrant splicing and leads to the skipping of exon 2 of PMP22 by in vitro minigene splicing assay. RESULTS: We demonstrated that the c.78 + 3G > T variant causes the skipping of exon 2 and leads to loss of function of the mutant allele. CONCLUSION: Searching for sequence variants located outside the canonical splice sites should also be considered even when deletion of PMP22 is not found in a patient with a clinical diagnosis suggesting HNPP.


Assuntos
Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Doenças do Sistema Nervoso Periférico , Humanos , Hibridização in Situ Fluorescente , Proteínas da Mielina/genética , Doenças do Sistema Nervoso Periférico/genética , Paralisia , Doença de Charcot-Marie-Tooth/genética
20.
Nagoya J Med Sci ; 85(1): 204-210, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36923620

RESUMO

Hereditary neuropathy with liability to pressure palsy (HNPP) is a rare autosomal dominant disease characterized by focal, recurrent, demyelinating peripheral neuropathies. It is caused by deletions of the gene encoding for peripheral myelin protein 22 (PMP22) on chromosome 17. While it may range widely, the most common clinical presentation is an acute, focal mononeuropathy with numbness or muscle weakness after trauma or compression. Diagnostic tools include electrophysiological studies, genetic tests and nerve biopsies. There is no standard surgical or pharmacological treatment. The course of the disease is usually benign, with spontaneous improvement after most episodes of peripheral nerve palsy. HNPP is best managed by early detection, preventative measures, and subsequent treatment of symptoms. According to the medical literature, operative treatment was undertaken in few cases and limited to decompression of the nerve at the classic entrapment sites of the carpal or cubital tunnels. We present a case of multiple tendon transfer (pronator teres to extensor carpi radialis brevis and flexor carpi radialis to extensor digitorum communis) with a two-year follow-up in a 24-year-old woman with HNPP who was affected by irreversible radial nerve palsy, and conclude with a review of the medical literature related to the disease.


Assuntos
Doenças do Sistema Nervoso Periférico , Neuropatia Radial , Feminino , Humanos , Adulto Jovem , Adulto , Neuropatia Radial/etiologia , Neuropatia Radial/cirurgia , Transferência Tendinosa , Proteínas da Mielina/genética , Paralisia/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA